Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446074

RESUMO

Over the last few years, intense research efforts have been made to anticipate or improve the diagnosis of Alzheimer's disease by detecting blood biomarkers. However, the most promising blood biomarkers identified to date have some limitations, most of them related to the techniques required for their detection. Hence, new blood biomarkers should be identified to improve the diagnosis of AD, better discriminate between AD and mild cognitive impairment (MCI) and identify cognitively unimpaired (CU) older individuals at risk for progression to AD. Our previous studies demonstrated that both the purinergic receptor P2X7 and the tissue-nonspecific alkaline phosphatase ectoenzyme (TNAP) are upregulated in the brains of AD patients. Since both proteins are also present in plasma, we investigated whether plasma P2X7R and TNAP are altered in MCI and AD patients and, if so, their potential role as AD biomarkers. We found that AD but not MCI patients present increased plasma P2X7R levels. Nevertheless, TNAP plasma activity was increased in MCI patients and decreased in the AD group. ROC curve analysis indicated that measuring both parameters has a reasonable discriminating capability to diagnose MCI and AD conditions. In addition to confirming that individuals progressing to MCI have increased TNAP activity in plasma, longitudinal studies also revealed that CU individuals have lower plasma TNAP activity than stable controls. Thus, we propose that P2X7 and TNAP could serve as new plasma biomarkers for MCI and AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Fosfatase Alcalina , Biomarcadores , Disfunção Cognitiva/diagnóstico , Estudos Longitudinais , Peptídeos beta-Amiloides , Progressão da Doença , Proteínas tau
2.
Alzheimers Res Ther ; 15(1): 105, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287063

RESUMO

BACKGROUND: Over recent years, increasing evidence suggests a causal relationship between neurofibrillary tangles (NFTs) formation, the main histopathological hallmark of tauopathies, including Alzheimer's disease (AD), and the ubiquitin-proteasome system (UPS) dysfunction detected in these patients. Nevertheless, the mechanisms underlying UPS failure and the factors involved remain poorly understood. Given that AD and tauopathies are associated with chronic neuroinflammation, here, we explore if ATP, one of the danger-associated molecules patterns (DAMPs) associated with neuroinflammation, impacts on AD-associated UPS dysfunction. METHODS: To evaluate if ATP may modulate the UPS via its selective P2X7 receptor, we combined in vitro and in vivo approaches using both pharmacological and genetic tools. We analyze postmortem samples from human AD patients and P301S mice, a mouse model that mimics pathology observed in AD patients, and those from the new transgenic mouse lines generated, such as P301S mice expressing the UPS reporter UbG76V-YFP or P301S deficient of P2X7R. RESULTS: We describe for the first time that extracellular ATP-induced activation of the purinergic P2X7 receptor (P2X7R) downregulates the transcription of ß5 and ß1 proteasomal catalytic subunits via the PI3K/Akt/GSK3/Nfr2 pathway, leading to their deficient assembly into the 20S core proteasomal complex, resulting in a reduced proteasomal chymotrypsin-like and postglutamyl-like activities. Using UPS-reported mice (UbGFP mice), we identified neurons and microglial cells as the most sensitive cell linages to a P2X7R-mediated UPS regulation. In vivo pharmacological or genetic P2X7R blockade reverted the proteasomal impairment developed by P301S mice, which mimics that were detected in AD patients. Finally, the generation of P301S;UbGFP mice allowed us to identify those hippocampal cells more sensitive to UPS impairment and demonstrate that the pharmacological or genetic blockade of P2X7R promotes their survival. CONCLUSIONS: Our work demonstrates the sustained and aberrant activation of P2X7R caused by Tau-induced neuroinflammation contributes to the UPS dysfunction and subsequent neuronal death associated with AD, especially in the hippocampus.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Humanos , Animais , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Complexo de Endopeptidases do Proteassoma , Receptores Purinérgicos P2X7/genética , Ubiquitina , Doenças Neuroinflamatórias , Quinase 3 da Glicogênio Sintase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Transgênicos , Trifosfato de Adenosina/metabolismo
3.
Cells ; 11(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36497008

RESUMO

While acute inflammation is widely accepted as an important response mechanism of cells against tissue injury, sustained inflammatory processes are increasingly recognized as one of the main contributors to numerous diseases, including central-nervous system (CNS)-related and non-CNS-related diseases such as depression, neurodegenerative diseases, type 2 diabetes, hypertension, cardiovascular diseases, chronic kidney disease, osteoporosis, and cancer [...].


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Neurodegenerativas , Humanos , Transdução de Sinais/fisiologia , Sistema Nervoso Central
4.
Methods Mol Biol ; 2510: 355-366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35776336

RESUMO

The nervous system is formed by a complex network of neuronal connections. During development, neurons elongate their axons through highly stereotyped anatomical pathways to form precise connections. Defects in these mechanisms are related with neurological disorders. Previous studies have reported that inhibition of the P2X7 receptor, an ionotropic purinergic receptor, promotes axonal growth and branching in cultured neurons. However, little is known about the in vivo mechanism of axonal elongation regulated by P2X7. Here, we detailed a step-by-step method to perform in utero cortical electroporation and quantified the electroporated axons employing accessible and open-source image processing software. This effective surgical procedure manipulates in vivo the gene expression in a discrete population of callosal projection neuron. Thus, a better understanding of the involvement of P2X7 in the in vivo establishment of neuronal circuits might help to clarify the basic biology of several neurodevelopmental disorders and axonal regenerative processes.


Assuntos
Neurônios , Receptores Purinérgicos P2X7 , Axônios/fisiologia , Eletroporação/métodos , Neurônios/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo
6.
Neurobiol Dis ; 165: 105632, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35065251

RESUMO

Tauopathies are a family of neurodegenerative diseases characterized by the presence of abnormally hyperphosphorylated Tau protein. Several studies have proposed that increased extracellular Tau (eTau) leads to the spread of cerebral tauopathy. However, the molecular mechanisms underlying eTau-induced neurotoxicity remain unclear. Previous in vitro studies reported that the ecto-enzyme tissue-nonspecific alkaline phosphatase (TNAP) dephosphorylate eTau at different sites increasing its neurotoxicity. Here, we confirm TNAP protein upregulation in the brains of Alzheimer's patients and found a similar TNAP increase in Pick's disease patients and P301S mice, a well-characterized mouse model of tauopathies. Interestingly, the conditional overexpression of TNAP causes intracellular Tau hyperphosphorylation and aggregation in cells neighbouring those overexpressing the ectoenzyme. Conversely, the genetic disruption of TNAP reduced the dephosphorylation of eTau and decreased neuronal hyperactivity, brain atrophy, and hippocampal neuronal death in P301S mice. TNAP haploinsufficiency in P301S mice prevents the decreased anxiety-like behaviour, motor deficiency, and increased memory capacity and life expectancy. Similar results were observed by the in vivo pharmacological blunting of TNAP activity. This study provides the first in vivo evidence demonstrating that raised TNAP activity is critical for Tau-induced neurotoxicity and suggest that TNAP blockade may be a novel and efficient therapy to treat tauopathies.


Assuntos
Fosfatase Alcalina , Tauopatias , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/uso terapêutico , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Expectativa de Vida , Camundongos , Camundongos Transgênicos , Tauopatias/metabolismo , Regulação para Cima , Proteínas tau/metabolismo
7.
Prog Neurobiol ; 208: 102173, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34516970

RESUMO

Tauopathies are neurodegenerative diseases characterized by the presence of aberrant intraneuronal aggregates of hyperphosphorylated Tau protein. Recent studies suggest that associated chronic neuroinflammation may contribute to the pathological Tau dissemination. However, the underlying molecular mechanisms remain unknown. Since purinergic P2X7 receptors (P2X7) can sense the rise of extracellular ATP levels associated with neuroinflammation, its involvement in neurodegeneration-associated inflammation was suggested. We found a P2X7 upregulation in patients diagnosed with different tauopathies and in a tauopathy mouse model, P301S mice. In vivo pharmacological or genetic blockade of P2X7 reverted microglial activation in P301S mice leading to a reduction in microglial migratory, secretory, and proliferative capacities, and promoting phagocytic function. Furthermore, it reduced the intraneuronal phosphorylated Tau levels in a GSK3-dependent way and increased extracellular phosphorylated Tau levels by reducing the expression of ectoenzyme TNAP. Accordingly, pharmacological or genetic blockade of P2X7 improved the cellular survival, motor and memory deficits and anxiolytic profile in P301S mice. Contrary, P2X7 overexpression caused a significant worsening of Tau-induced toxicity and aggravated the deteriorated motor and memory deficits in P301S mice. Our results indicate that P2X7 plays a deleterious role in tauopathies and suggest that its blockade may be a promising approach to treat Tauopathies.


Assuntos
Receptores Purinérgicos P2X7 , Tauopatias , Animais , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/uso terapêutico , Humanos , Camundongos , Camundongos Transgênicos , Receptores Purinérgicos P2X7/uso terapêutico , Tauopatias/tratamento farmacológico , Tauopatias/metabolismo , Proteínas tau/metabolismo
9.
Front Mol Neurosci ; 13: 94, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581707

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease characterized by a progressive cognitive decline associated with global brain damage. Initially, intracellular paired helical filaments composed by hyperphosphorylated tau and extracellular deposits of amyloid-ß (Aß) were postulated as the causing factors of the synaptic dysfunction, neuroinflammation, oxidative stress, and neuronal death, detected in AD patients. Therefore, the vast majority of clinical trials were focused on targeting Aß and tau directly, but no effective treatment has been reported so far. Consequently, only palliative treatments are currently available for AD patients. Over recent years, several studies have suggested the involvement of the purinergic receptor P2X7 (P2X7R), a plasma membrane ionotropic ATP-gated receptor, in the AD brain pathology. In this line, altered expression levels and function of P2X7R were found both in AD patients and AD mouse models. Consequently, genetic depletion or pharmacological inhibition of P2X7R ameliorated the hallmarks and symptoms of different AD mouse models. In this review, we provide an overview of the current knowledge about the role of the P2X7R in AD.

10.
Methods Mol Biol ; 2041: 233-241, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31646493

RESUMO

Imbalance in extracellular ATP levels in brain tissue has been suggested as a triggering factor for several neurological disorders. Here, we describe the most sensitive and reliable technique for monitoring the ATP levels in mice cerebrospinal samples collected by cisterna magna puncture technique and quantified using a microplate reader.


Assuntos
Trifosfato de Adenosina/líquido cefalorraquidiano , Encéfalo/metabolismo , Cisterna Magna/metabolismo , Luciferases/metabolismo , Microtecnologia/métodos , Fotometria/métodos , Animais , Cisterna Magna/cirurgia , Camundongos
11.
Front Cell Neurosci ; 13: 143, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031598

RESUMO

Alzheimer disease is a neurodegenerative disease characterized by the presence of senile plaques composed of amyloid-ß (Aß) peptide, neurofibrillary tangles, neuronal loss and neuroinflammation. Previous works have revealed that extracellular ATP, through its selective receptor P2X7 (P2X7R), is essential to neuroinflammation and neurotoxicity induced by Aß. P2X7R is upregulated on microglial cells around the senile plaques. This upregulation progressively rises with age and is parallel with an accumulation of senile plaques and also correlates with the synaptic toxicity detected both in animal models reproducing AD and human patients of AD. Furthermore, the late onset of the first AD-associated symptoms suggests that aging associated-changes may be relevant to the disease progression. Thus, microglia motility and its capacity to respond to exogenous ATP stimulus decrease with aging. To evaluate whether the P2X7R age related-changes on microglia cells may be relevant to the AD progression, we generated a new transgenic mouse model crossing an Aß peptide mouse model, J20 mice and the P2X7R reporter mice P2X7REGFP. Our results indicate that neuroinflammation induced by Aß peptide causes changes in the P2X7R distribution pattern, increasing it s expression in microglial cells at advanced and late stages, when microgliosis occurs, but not in the early stages, in the absence of microgliosis. In addition, we found that P2X7R activation promotes microglial cells migration to senile plaques but decreases their phagocytic capacity. Moreover, we found a significant reduction of P2X7R transcription on neuronal cells at the early and advanced stages, but not at the late stages. Since previous studies have reported that either pharmacological inhibition or selective downregulation of P2X7R significantly improve behavioral alterations and reduce the incidence and size of senile plaques in the early and advanced stages of AD, the results presented here provide new evidence, indicating that this therapeutic approach could be also efficient in the late stages of the disease.

12.
Brain Res Bull ; 151: 84-91, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30721769

RESUMO

Neurodegenerative diseases (ND) are a heterogeneous group of neurological disorders characterized by a progressive loss of neuronal function which results in neuronal death. Although a specific toxic factor has been identified for each ND, all of them share common pathological molecular mechanisms favouring the disease development. In the final stages of ND, patients become unable to take care of themselves and decline to a total functional incapacitation that leads to their death. Some of the main factors which contribute to the disease progression include proteasomal dysfunction, neuroinflammation, synaptic alterations, protein aggregation, and oxidative stress. Over recent years, evidence has been accumulated to suggest that purinergic signaling plays a key role in the aforementioned molecular pathways. In this review, we revise the implications of the purinergic signaling in the common molecular mechanism underlying the ND. In particular, we focus on the role of the purinergic receptors P2X7, P2Y2 and the ectoenzyme tissue-nonspecific alkaline phosphatase (TNAP).


Assuntos
Doenças Neurodegenerativas/metabolismo , Nucleotídeos/metabolismo , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/fisiologia , Animais , Encéfalo/metabolismo , Humanos , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Neurônios/metabolismo , Nucleotídeos/fisiologia , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/fisiologia , Receptores Purinérgicos P2Y2/metabolismo , Receptores Purinérgicos P2Y2/fisiologia , Transdução de Sinais
13.
Neurosci Lett ; 698: 204-208, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30677432

RESUMO

It is well known that transgenic mice overexpressing human tau protein with P301S mutation driven by the mouse prion protein promoter show clasping and limb retraction, hunched back and paralysis, followed by inability to feed that results in death around 12 months of age. To understand these motor deficits, we have carried out rotarod tests on PS19 line and demonstrated how they worsened during aging. Then, we have analyzed if these phenotypic characteristics correlate with sciatic nerve degeneration. We first demonstrated by western blot and immunohistochemistry that the sciatic nerve expresses the transgenic tau protein; then, electron microscopy studies showed alterations in myelin, mainly a detachment of myelin lamellae at Schmidt-Lanterman clefts. Similar motor deficits and myelin alterations have been previously reported in tau knockout and overexpressing transgenic mice; taking into account that PS19 model is widely used to study tauopathies, we suggest that analyzing the expression of transgenic tau protein and myelin abnormalities in the sciatic nerve should be considered when studying some features as motor performance or survival.


Assuntos
Hipocampo/metabolismo , Fármacos do Sistema Nervoso Periférico/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Modelos Animais de Doenças , Camundongos Transgênicos , Mutação/genética , Bainha de Mielina/metabolismo , Tauopatias/genética
14.
Int J Mol Sci ; 19(4)2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29584657

RESUMO

Tauopathies are a class of neurodegenerative diseases associated with the microtubule-associated protein tau, with Alzheimer's disease (AD) being the most prevalent related disorder. Neurofibrillary tangles (NFTs) are one of the neuropathological hallmarks present in the brains of AD patients. Because NFTs are aberrant intracellular inclusions formed by hyperphosphorylated tau, it was initially proposed that phosphorylated and/or aggregated intracellular tau protein was causative of neuronal death. However, recent studies suggest a toxic role for non-phosphorylated and non-aggregated tau when it is located in the brain extracellular space. In this work, we will discuss the neurotoxic role of extracellular tau as well its involvement in the spreading of tau pathologies.


Assuntos
Doença de Alzheimer/metabolismo , Emaranhados Neurofibrilares/patologia , Proteínas tau/metabolismo , Sistema Nervoso Central/metabolismo , Espaço Extracelular/metabolismo , Humanos , Emaranhados Neurofibrilares/metabolismo , Fosforilação , Agregados Proteicos , Sinapses/metabolismo
15.
Front Pharmacol ; 9: 170, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29551976

RESUMO

Hypophosphatasia (HPP) is a rare heritable metabolic bone disease caused by hypomorphic mutations in the ALPL (in human) or Akp2 (in mouse) gene, encoding the tissue-nonspecific alkaline phosphatase (TNAP) enzyme. In addition to skeletal and dental malformations, severe forms of HPP are also characterized by the presence of spontaneous seizures. Initially, these seizures were attributed to an impairment of GABAergic neurotransmission caused by altered vitamin B6 metabolism. However, recent work by our group using knockout mice null for TNAP (TNAP-/-), a well-described model of infantile HPP, has revealed a deregulation of purinergic signaling contributing to the seizure phenotype. In the present study, we report that adult heterozygous (TNAP+/-) transgenic mice with decreased TNAP activity in the brain are more susceptible to adenosine 5'-triphosphate (ATP)-induced seizures. Interestingly, when we analyzed the extracellular levels of ATP in the cerebrospinal fluid, we found that TNAP+/- mice present lower levels than control mice. To elucidate the underlying mechanism, we evaluated the expression levels of other ectonucleotidases, as well as different proteins involved in ATP release, such as pannexin, connexins, and vesicular nucleotide transporter. Among these, Pannexin-1 (Panx1) was the only one showing diminished levels in the brains of TNAP+/- mice. Altogether, these findings suggest that a physiological regulation of extracellular ATP levels and Panx1 changes may compensate for the reduced TNAP activity in this model of HPP.

16.
FASEB J ; 32(6): 3020-3032, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29401585

RESUMO

The disturbances of cellular proteostasis caused by the alteration in the ubiquitin-proteasome system (UPS) have been proposed as a common mechanism underlying several neural pathologies that involve a neuroinflammatory process. As we have previously reported that the nucleotide receptor P2Y purinoceptor 2 (P2Y2R) regulates the proteasomal catalytic activities, we wonder whether this receptor is involved in the UPS disturbances associated with the neuroinflammation process. With the use of mice expressing a UPS reporter [mice expressing the UPS reporter ubiquitinG76V-green fluorescent protein (UbGFP mice)], we found that LPS-induced acute neuroinflammation status causes a UPS impairment in astrocytes and microglial cells by a mechanism dependent on P2Y2R. In this line, LPS-treated double transgenic UbGFP; P2Y2R-/- mice did not present a UPS impairment in astrocytes or a social interaction deficit as severe as that observed in LPS-treated UbGFP mice. In vivo administration of selective P2Y2R agonist diuridine tetraphosphate reversed the UPS impairment completely in astrocytes and partially in microglial cells, promoting increased expression of the proteasomal ß5 subunit by a mechanism dependent on the Src/PI3K/ERK pathway. Altogether, our results suggest that LPS induces unbalanced proteostasis in astrocytes by blocking P2Y2R. Finally, our findings point to the design of selective P2Y2R agonist drugs as a new therapeutic approach to treat the neuroinflammatory status.-De Diego García, L., Sebastián-Serrano, Á., Hernández, I. H., Pintor, J., Lucas, J. J., Díaz-Hernández, M. The regulation of proteostasis in glial cells by nucleotide receptors is key in acute neuroinflammation.


Assuntos
Astrócitos/metabolismo , Sistema de Sinalização das MAP Quinases , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteostase , Receptores Purinérgicos P2Y2/metabolismo , Ubiquitina/metabolismo , Animais , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Knockout , Complexo de Endopeptidases do Proteassoma/genética , Receptores Purinérgicos P2Y2/genética , Comportamento Social , Ubiquitina/genética
17.
Front Mol Neurosci ; 11: 442, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618601

RESUMO

Prolonged seizures (status epilepticus, SE) may drive hippocampal dysfunction and epileptogenesis, at least partly, through an elevation in neurogenesis, dysregulation of migration and aberrant dendritic arborization of newly-formed neurons. MicroRNA-22 was recently found to protect against the development of epileptic foci, but the mechanisms remain incompletely understood. Here, we investigated the contribution of microRNA-22 to SE-induced aberrant adult neurogenesis. SE was induced by intraamygdala microinjection of kainic acid (KA) to model unilateral hippocampal neuropathology in mice. MicroRNA-22 expression was suppressed using specific oligonucleotide inhibitors (antagomir-22) and newly-formed neurons were visualized using the thymidine analog iodo-deoxyuridine (IdU) and a green fluorescent protein (GFP)-expressing retrovirus to visualize the dendritic tree and synaptic spines. Using this approach, we quantified differences in the rate of neurogenesis and migration, the structure of the apical dendritic tree and density and morphology of dendritic spines in newly-formed neurons.SE resulted in an increased rate of hippocampal neurogenesis, including within the undamaged contralateral dentate gyrus (DG). Newly-formed neurons underwent aberrant migration, both within the granule cell layer and into ectopic sites. Inhibition of microRNA-22 exacerbated these changes. The dendritic diameter and the density and average volume of dendritic spines were unaffected by SE, but these parameters were all elevated in mice in which microRNA-22 was suppressed. MicroRNA-22 inhibition also reduced the length and complexity of the dendritic tree, independently of SE. These data indicate that microRNA-22 is an important regulator of morphogenesis of newly-formed neurons in adults and plays a role in supressing aberrant neurogenesis associated with SE.

18.
J Neurosci ; 37(30): 7063-7072, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747389

RESUMO

The proposed presence of P2X7 receptor (P2X7R) in neurons has been the source of some contention. Initial studies suggested an absence of P2X7R mRNA in neurons, and the apparent nonspecificity of the antibodies used to identify P2X7R raised further doubts. However, subsequent studies using new pharmacological and biomolecular tools provided conclusive evidence supporting the existence of functional P2X7Rs in neurons. The P2X7 receptor has since been shown to play a leading role in multiple aspects of neuronal physiology, including axonal elongation and branching and neurotransmitter release. P2X7R has also been implicated in neuronal pathologies, in which it may influence neuronal survival. Together, this body of research suggests that P2X7R may constitute an important therapeutic target for a variety of neurological disorders.


Assuntos
Trifosfato de Adenosina/metabolismo , Astrócitos/metabolismo , Modelos Neurológicos , Doenças do Sistema Nervoso/metabolismo , Neurônios/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Sobrevivência Celular , Medicina Baseada em Evidências , Humanos , Doenças do Sistema Nervoso/patologia , Neurônios/patologia
19.
Biochim Biophys Acta Mol Basis Dis ; 1863(3): 643-653, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27932058

RESUMO

Atherosclerotic plaque calcification varies from early, diffuse microcalcifications to a bone-like tissue formed by endochondral ossification. Recently, a paradigm has emerged suggesting that if the bone metaplasia stabilizes the plaques, microcalcifications are harmful. Tissue-nonspecific alkaline phosphatase (TNAP), an ectoenzyme necessary for mineralization by its ability to hydrolyze inorganic pyrophosphate (PPi), is stimulated by inflammation in vascular smooth muscle cells (VSMCs). Our objective was to determine the role of TNAP in trans-differentiation of VSMCs and calcification. In rodent MOVAS and A7R5 VSMCs, addition of exogenous alkaline phosphatase (AP) or TNAP overexpression was sufficient to stimulate the expression of several chondrocyte markers and induce mineralization. Addition of exogenous AP to human mesenchymal stem cells cultured in pellets also stimulated chondrogenesis. Moreover, TNAP inhibition with levamisole in mouse primary chondrocytes dropped mineralization as well as the expression of chondrocyte markers. VSMCs trans-differentiated into chondrocyte-like cells, as well as primary chondrocytes, used TNAP to hydrolyze PPi, and PPi provoked the same effects as TNAP inhibition in primary chondrocytes. Interestingly, apatite crystals, associated or not to collagen, mimicked the effects of TNAP on VSMC trans-differentiation. AP and apatite crystals increased the expression of BMP-2 in VSMCs, and TNAP inhibition reduced BMP-2 levels in chondrocytes. Finally, the BMP-2 inhibitor noggin blocked the rise in aggrecan induced by AP in VSMCs, suggesting that TNAP induction in VSMCs triggers calcification, which stimulates chondrogenesis through BMP-2. Endochondral ossification in atherosclerotic plaques may therefore be induced by crystals, probably to confer stability to plaques with microcalcifications.


Assuntos
Fosfatase Alcalina/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Transdiferenciação Celular , Condrócitos/citologia , Músculo Liso Vascular/citologia , Animais , Calcificação Fisiológica , Cálcio/metabolismo , Linhagem Celular , Condrócitos/metabolismo , Condrogênese , Camundongos , Músculo Liso Vascular/metabolismo , Placa Aterosclerótica/metabolismo
20.
Biochim Biophys Acta Mol Basis Dis ; 1863(1): 43-51, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27768902

RESUMO

The Ubiquitin-Proteasome System (UPS) is essential for the regulation of the cellular proteostasis. Indeed, it has been postulated that an UPS dysregulation is the common mechanism that underlies several neurological disorders. Considering that extracellular nucleotides, through their selective P2Y2 receptor (P2Y2R), play a neuroprotective role in various neurological disorders that course with an UPS impairment, we wonder if this neuroprotective capacity resulted from their ability to modulate the UPS. Using a cellular model expressing two different UPS reporters, we found that the stimulation of P2Y2R by its selective agonist Up4U induced a significant reduction of UPS reporter levels. This reduction was due to an increase in two of the three peptidase proteasome activities, chymotrypsin and postglutamyl, caused by an increased expression of proteasome constitutive catalytic subunits ß1 and ß5. The intracellular signaling pathway involved required the activation of IP3/MEK1/2/ERK but was independent of PKC or PKA. Interestingly, the P2Y2R activation was able to revert both UPS-reporter accumulation and the cell death induced by a prolonged inhibition of UPS. Finally, we also observed that intracerebroventricular administration of Up4U induced a significant increase both of chymotrypsin and postglutamyl activities as well as an increased expression of proteasome subunits ß1 and ß5 in the hippocampus of wild-type mice, but not in P2Y2R KO mice. All these results strongly suggest that the capacity to modulate the UPS activity via P2Y2R is the molecular mechanism which is how the nucleotides play a neuroprotective role in neurological disorders.


Assuntos
Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nucleotídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y2/metabolismo , Animais , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Inositol 1,4,5-Trifosfato/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Nucleotídeos/metabolismo , Agonistas do Receptor Purinérgico P2Y/metabolismo , Nucleotídeos de Uracila/metabolismo , Nucleotídeos de Uracila/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...